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R. M. BARRER AND J. KLINOWSKI

In §1 the statistical thermodynamic treatment of ion exchange has been developed
for a system in which there is one kind of exchange site (for example, sodalite or
felspar). In an earlier treatment (Barrer & Falconer 1956) it was assumed that when
two entering ions occupied adjacent sites an extra energy could arise which was not
present when these ions did not occupy nearest neighbour positions. It was also
assumed that despite this pair-wise additive extra energy the distribution of ions on
sites was random. This latter assumption has now been removed, the consequences of
its removal examined, and the resultant treatment applied to calculation of charac-
teristic isotherm contours, thermodynamic equilibrium, free energy function for the
mixed crystals, miscibility gaps between end members of the exchange and the influ-
ence of temperature and other factors upon such gaps. The treatment can represent
and explain many of the features established experimentally in exchanges involving
zeolites, felspars, felspathoids and clay minerals, especially when it is extended, as has
been done in § 2, to allow for situations in which there is more than one kind of exchange
site, a situation which is common among zeolites. After considering the general case
of n different site groups in the exchanger and deriving expressions for the chemical
potentials and equilibrium constants in terms of contributions from component site
groups, calculations have been made in §2 of representative isotherm contours for the
particular situations:

(i) Two site groups, each fully exchangeable by ion A and ion B.

(ii) Two site groups, one excluding ion A and the other excluding ion B.

(iii) Two site groups, one available for both A and B and the other only for B.
For the first situation the occurrence of miscibility gaps has also been investigated.

In §3 the theory has been extended to isomorphous replacements of the types
Na, Al = Si and Ca, Al = Na, Si in tectosilicate frameworks. Certain tectosilicates
have nearly fixed Al/Si ratios while in others these ratios may vary within wide limits.
In addition it is found experimentally that in tectosilicates Al/Si ratios do not exceed
unity. The treatment developed can satisfy these three characteristics. The free energy
function plotted against Al content exhibits a minimum the position, depth and sharp-
ness of which depend upon the values of certain constants which have a clear physical
meaning. The compositions of some zeolites and felspathic minerals have been
interpreted in terms of the free energy function.

GENERAL INTRODUCTION
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1somorphous replacement is one of the most important chemical processes characterizing both

natural and synthetic aluminosilicates. Such replacement can occur by cation exchanges of the

kinds

Na =K, 2Na = Ca.

Although these reactions are very simple in terms of their stoichiometry investigations of ion

exchange in zeolites, felspathoids, felspars and clay minerals have revealed a number of situations

for which quantitative treatments are either inadequate or do not exist. These situations include

the following:

case

1. There is one kind of cation site available
for both cations

2. There is more than one kind of cation site
available for both cations

example

Sodalite hydrate and ions Li, Na, Ag (Barrer & Falconer 1956).
Alkali metal felspar and Na and K (Orville 1963). Clay minerals
and alkali and alkaline earth metal cations (Barrer & Jones

1971).

Many zeolites and common cations (Smith 19%1; Sherry 1971;
Barrer, Davies & Rees 1969; Barrer & Munday 19714, b, c;
Barrer & Klinowski 1974 ). Cancrinite hydrate and Li, Na and
Ag (Barrer & Falconer 1956)
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ISOMORPHOUS REPLACEMENT IN ALUMINOSILICATES 639

3. There is more than one kind of cation site, Some zeolites and cations of disparate sizes (Barrer & Falconer
all types available for one cation but some 1956; Barrer, Papadopoulos & Rees 1967)
not available for the other

4. Cations of one kind occupy only certain Faujasite with Na and tetramethylammonium (Barrer, Buser
types of site; cations of the other kind & Griitter 1956)
occupy only sites of another type

A statistical thermodynamic treatment of case 1 has been given (Barrer & Falconer 1956), as
have formal treatments of case 2 (Barrer & Klinowski 1972) and of case 3 (Barrer, Klinowski &
Sherry 1973). It will be a purpose of this work to improve the statistical thermodynamic formula-
tion for case 1 and to extend this formulation to other cases (§§ 1 and 2).

However, the isomorphous replacements involved in cation interchange are not the only kinds
or indeed even the most important. Other processes are exemplified by the following reactions

Na, Al=Si, Ca, Al = Na, Si.

The first of these is often found among both natural and synthetic zeolites (see, for example,
Breck 1974); the second is exemplified among the felspars (Bragg & Claringbull 1965). No
theoretical treatment of these reactions exists and accordingly a further objective will be the
statistical thermodynamic treatment of these substitutions (§ 3).

1. CATION EXCHANGE ON A HOMOGENEOUS GROUP OF EXCHANGE SITES
(@) Introduction

Barrer & Falconer (1956) made a first approximation to the statistical thermodynamics of
exchange by adapting the theory of localized adsorption with interaction (Lacher 1937; Fowler
& Guggenheim 1939). Barrer & Falconer assumed a random distribution of cations among sites
even when extra energy changes occurred whenever two entering ions occupied adjacent sites.
Despite this the treatment successfully accounted for three major kinds of exchange isotherm:
ideal (extra energy approximately zero); sigmoid (extra energy positive (endothermic)); or
showing two-phase regions (extra energy sufficiently negative). For uni-univalent exchanges
a physical interpretation was also obtained of the nearly linear plots of In K. against cation
equivalent fractions which are sometimes observed experimentally (K. is defined in
equation (1.3)). '

These successes suggest that an advance could result if the assumption of random distribution
of ions on exchange sites was removed and the study extended to include exchanges involving
multivalent cations. The consequences are examined in § 1 for a single homogeneous group of
exchange sites as found in certain minerals (general introduction).

(b) The ion-exchange reaction
The general exchange reaction is
Z,\BZ + Zy AZX = Z, BZS + Z AZL, (1.1)

where ions of species A have a charge Z} and ions of B have a charge Z{. The subscripts c and s
refer to the crystalline phase and solution, respectively. The rational thermodynamic equilibrium

o _ Ay raf iy
“ T B

constant K, is then

(1.2)

43-2
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640 R. M. BARRER AND J. KLINOWSKI

where 4c and Be are equivalent cation fractions of A and B in the aluminosilicate and m#, m® are

molalities in the solution. f}, fg, ¥4 and yy are the corresponding activity coefficients.
We now define a quotient K, related to ion selectivity by

AZe(m)?a yEr _ AZe(aF)%s

Bia(md)7eyZe — BYa(ad)?e’

where the g5 are activities in solution. If we replace molalities in solution by equivalent cation

fractions 4s and Bs, then (Barrer & Klinowski 1972)

Ag» BEAfRe I

K = (1.3)

K,=K,Q= BIaATsfTr (1.4)
where Q = ZZ2A|[Z53(Zymd + ZymB)Zs—20)] (1.5)
I'=ygply. (1.6)

The activity coefficients y, and yy in the solution refer at all times to the molarity scale, even
when (equation (1.4)) the actual concentrations have been, for convenience, expressed as
equivalent fractions. When cation concentrations are so expressed (Z,m# + Zym®) must also be
given to define the absolute concentration of each aqueous ion.

(¢) The model

A crystal in which there is only one kind of exchange site will be considered. In tectosilicates
one may have more crystallographic cationic sifes than there are framework charges. It follows that
some sites then remain unfilled. If we consider a system containing cations A and B and including
unfilled sites, O, the following pairs are involved:

00O, AO, BO, AA, AB, BB.
We make the following assumptions:

(i) When two entering ions, A, occupy adjacent sites, an additional change in energy of the
crystal takes place. This change in energy is set equal to 2w, , /v where w, 4 is an energy term and
v is the coordination number of a site with respect to other sites. Of the above list of possible
cation pairs, AA is the only pair which produces this extra energy, over and above the binding
energy of unpaired A cations.

(ii) The change in energy is additive with respect to N, ,, the number of AA pairs, indepen-
dently of whether these pairs are in clusters or isolated.

In the crystal there are NV, cations of A and Ny, cations of B, distributed among N identical 51tes
The number of distinguishable ways of distributing the ions among the sites is

N!
Ny Ng! (N—=N,y—Ng)!"

We are at present concerned only with the cation exchange in an already formed and permanent

(1.7)

aluminosilicate framework the amount of which is constant. The partition function for that
amount of the anionic framework carrying one negative charge will be denoted by P, so thatif N,
is the total charge the framework partition function is PYo where

‘ATOZZANA_!—ZBNB' (1.8)
The partition function for the mixed crystal is then written as
P= Al JA J¥e JYa pNo pint, (1.9)

NN (N=Ny—Ng)! 4
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ISOMORPHOUS REPLACEMENT IN ALUMINOSILICATES 641

In equation (1.9) J, and Jy are the partition functions of a cation of A and B, respectively, in the
anionic framework. There is a configurational part, C(Ng), in the partition function of the Ny
guest molecules. If J is the partition function of a single intracrystalline guest throughout
§§1, 2 and 3, we will for simplicity write Jg¢ for C(Ng) (Jg)Ne because Jg¢ will not here be
evaluated. In zeolites the guest is usually water but in some felspathoids it may be NaCl, Na,CO,,
Na,SO, and other species. In felspars and certain felspathoids there are no guest molecules so
that J3¢can be omitted. In the general case Ng, J; and P, may change with cationic composition.
Pint allows for the contribution to P arising from the extra energy 2w, ,/v when a pair of A ions
occupy adjacent sites (assumptions (i) and (ii)).

(d) Complete and incomplete exchange

All quantities under the factorial in the partition function given by equation (1.9) must be
greater than or equal to, zero. Thus also
N—Ny,—Ng >0
which divided by N, gives N —Ae|Zy— Be|Zy > 0,
where 7 = N|[N,. It follows that the crystal can be obtained in pure B-form only if y > 1/Zy; and
in pure A-formonlyify > 1/Z,. When 7 is greater than both 1/Z, and 1/Zy exchange can always
proceed to completion; if the value of 9 lies between 1/Z, and 1/Zy there is incomplete exchange.
If A is the entering ion, exchange can only be incomplete when Z, < Zy and 9 < 1/Z,. It is
obvious that for cations of equal valence the exchange can always proceed to completion.
Multiplying the previous inequality by Z, Z; we obtain
Zy(Zyn—1)—Ae(Zg—Z,) 2 0,
which leads to the maximum equivalent fraction of A in the crystal as the lower of the two
values: pmax _ Z\(Zpy—1)
C ZB - ZA 2

Amax = 1,

TABLE 1. A®*X FOR DIFFERENT Z,, Z; AND %

Z, =1; Zy =2 Z, =1; Zy =3 Z, = 2; Z; =3

—r— — —t—
{ Az ?7 A7 ” A7
0.5 0 3 0 1 0
0.6 0.2 0.4 0.1 0.4 0.4
0.7 0.4 0.5 0.25 0.45 0.7
0.8 0.6 0.6 0.4 0.5 1.0
0.9 0.8 0.7 0.55
1.0 1.0 0.8 0.7

0.9 0.85

1.0 1.0

Table 1 gives the values of 41 for several combinations of Z, and Zy and different values of 7.
The behaviour predicted in table 1 may be illustrated for the case Z, = 1, Z;; = 2 with reference
to anorthite, the unit cell content of which is 4(CaAl,Si,Og). The four cation sites available per
unit cell are already occupied by four Ca?* ions. To replace one Ca?*+ by 2Nat would require
an additional site —one more than is available. Accordingly no exchange of this kind is possible.
Any reaction would have to be of the kind

Ca, Al—> Na, Si
to be discussed later (§3).
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642 R. M. BARRER AND J. KLINOWSKI

(e) The ion-exchange equilibria
The relation between the partition function and the Helmholtz free energy, F, is
F=—kTnP. (1.10)

To calculate the logarithm of the partition function given by equation (1.9) Stirling’s approxi-
mation is applied to all factorial terms. In the algebra which follows we have assumed AN > 0.
For the case when AN = (N— N, — N) = 0 the terms in ANIn AN must be omitted in equation
(1.11) onwards. From equations (1.9) and (1.10) we have

F=—kT[NInN—N,In N, — NyIn Ny—ANIn AN+ N, InJ,
+ NyInJy + NgInJg + N, InP,] + Fint, (1.11)

where Fintis —kT'In Pint, The crystal may be considered as a solid solution of two components,
AL, and BLy where L, is the amount of anionic framework associated with an A ion and
carrying anionic charge Z, and Ly is this amount of framework associated with B and carrying
anionic charge Zg. If Si/Al = § then

AL, = A[(Si,Al) Oz(1+s)]zA§ BLy = B[(Si,Al) Oz(1+a)]zn~

The numbers of lattice-forming units AL, and BLy are then respectively equal to the total
numbers N, and Ny ofions A and Bin the exchanger. If for the exchanger capable of full exchange
for either A or Bions the standard states for AL, and BLy are defined as pure A-crystal (AL,) and
pure B-crystal (BLy) then the standard quantities can be calculated from the values of partition
functions per mol of AL, and BLy. If Ny changes with electrolyte dilution N is the value of Ng
in pure AL, in equilibrium with infinitely dilute solution containing ion A; N% is the value of Ng
in pure BLj in equilibrium with infinitely dilute solution. We put n§ = N§/N, and n§ = N§/N,.
Let J¥, J§ and P§ be the values of J,,, J; and Py, at the standard state with respect to A; the corres-
ponding quantities superscripted with a triangle refer to the standard state with respect to B. The
required standard chemical potentials are

F,=#8u=—RTInPg, = —RT[ZynInZyn—(Zyn—1)In(Zyn-1)
+InJ¥+Z, nInJE+ Z, In P¥ — A%,

F§, =48, =—RTInP§, = —RT[ZynlnZyy— (Zgy—1)In (Zyy—1)
+InJ§+ Zgn§In J§ + Zy In PR,

(1.12)

where 4% is the value of FInt/£ T in pure A-crystal calculated for N, = Avogadro’s number. Since
in pure B-crystal Fint = 0 there is no term corresponding with 4% for B-crystal.
The thermodynamic equilibrium constant for the exchange reaction (1.1) is

InK, = (ZAILJ?LB—ZBﬂELA‘FZBﬂi“ZA/‘g,)/RT- (1.13)
Taking 1§y, and xf;, from equation (1.12) we obtain for In K,
InK, =Z,(Zgn—1)In(Zgy—1) = Zp(Zyn—1)In (Zyn—1) + Zy Zpn1n (Z,/Z5)
+1n (J}) 78/ (Jg)?A - Zy AX + Zy Zy In (P PE
+Z, ZgnEIn JE—Z, ZynIn JG + ¥, (1.14)
where X = (Zgpul —Z, ug)|RT. (1.15)
For Z, = Zy = Z, equation (1.14) greatly simplifies.
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ISOMORPHOUS REPLACEMENT IN ALUMINOSILICATES 643

(f) The evaluation of Fint

If we consider a system containing cations A, B ... and including unfilled sites, O, the following
pairs are involved: 00, AO, BO... AA, AB... BB, .

N, o willinfluence the numbers of other pairs, but these numbers are not required for our calcula-
tion of Fint since all pairs except AA do not produce any extra energy term. It has been shown
(Barrer & Klinowski, in preparation) that Firt is not affected by the numbers of other pairs and
that the expression obtained for Fint in the case of adsorption of a single substance (Lacher 1937;
Fowler & Guggenheim 1939) applies. This expression is

2(1-0,) Dyp—20
it — k7w, i 20 =08) vy ;&_—A_} 1.16
S Ve R A DTN (110
where Dyp=[1-40,(1-0,) oy, ]2 +1,
opn = 1—exp (—2wy,[vkT), (1.17)

Ox = Ny[N=A4c|Z,7.
Barrer & Falconer (1956) assumed that the siting of ions A was random and therefore used the
simpler expression for Fint Fint = (N2/N) w,,. (1.18)

(g) Calculation of chemical potentials

'The chemical potentials x4y, and pgy,, are

KoL, = L(aF/aNA)BLB; HUBLy = L(aF/aNB)ALA’ (1.19)
where L is the Avogadro number.
The conditions of equation (1.19) can be met by adding more BLy to a mixture containing
a fixed amount of AL, and vice versa. This operation involves increasing the total amount of the
crystalline phase, and therefore increases N, the total number of sites available for cations (which
may exceed Z, N, + Zy Ny). From consideration of electrical neutrality (equation (1.8)) we have
where, for the exchanger to be fully convertible into a univalent cationic form, one must have
N|N, = 5 > 1. It follows that
(aN/aNA)BLB = L7 (aN/aNB)ALA = Zg7. (1.21)
In order to obtain general expressions for the chemical potentials 5, and ug,, one must know
how J,, Jg,Jg, Ng and P, vary with the cationic composition of the crystal. We assume that
these quantities are independent of N, and Ng.
The numbers of cations may be replaced by equivalent fractions Ac and Bc, where
Ny = NyAc/Zy; Ny = Ny Bel Zs, (1.22)
One then obtains the following expressions for the chemical potentials in equation (1.19):
HaL, = —RT[Zynlny— (Zyn—1)In(n—Ac]Z, — Be|Zy)
+InZ, +Z,ngInJy+InJy+Z, InP, —InAc—4,],
tpry = —RT[ZgyIny — (Zyyn—1)In (9 — Ao/Z4 — Be|Zg)
+InZg+Zgnglndg+1Indg+ZgIn P, —1n B — 4y],

(1.23)
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644 'R. M. BARRER AND J. KLINOWSKI
1 (QFint |
where + = rrlaw),,

(1.24)
1 (QFint
=17 ().,
To obtain the chemical potentials Barrer & Falconer (1956) carried out the differentiation in
equation (1.19) with respect to Ac and B. instead of N, and Ny. This overlooks the fact that one
may not vary the equivalent fraction of one cation while keeping the equivalent fraction of the
other cation constant. Consequently, their equations (7) are incorrect; this however does not

affect the expression for K, given in that paper or indeed any of its conclusions. For identity with
the definition of chemical potentials

ﬂALA/RT = /’(’AeLA/RT+1nA0fA3} (1.25)
by [RT = pFr,[RT +1n Be fi.
The activity coefficients of AL, and BLy are then
Infy = (Zyn—1)1n (ZAZB”“ZBA"_ZAB") +4,— 4%,
ZyZyn—2Zy (1.26)

— ZAZBﬂ—ZBAC'“ZABc
Infy = (an—1)1n( AN + Ay,

For Z, = Zy the first terms on the right in equations (1.26) is zero.

(h) Evaluation of the quantities A

The quantities 4 defined by equation (1.24) are evaluated by partial differentiation of Fint with
respect to N, or Ny. We shall obtain these for two different expressions for Fint: the first order
approximation, used by Barrer & Falconer, which assumes random siting of cations (equation
(1.18)); and the refined expression, similar to the Lacher-Fowler-Guggenheim treatment of
adsorption with interaction and including the entropy effect (equation (1.16)). Using the
Barrer-Falconer expression we obtain

w
Ay = 728 (1~ BY,
_ Zpwas 2
AN = _Waa
AT ZunkT

The refined treatment was found to give

Dyp—20 2(1-6,)
A =V[lZ In A4 A ln A }
A=y [i& I 5 GGy TR =20,
Daa(i=0,)

D¥ —20% . 2(1—0%)
¥ _ 01 AA A A
AX=v [ (ZamIn s on 0 DE 2055]’

Ay = $(Zgnv)1 (1.28)

where 0%, D}, and 4} are the values of 0, Dy, and 4, at Ac = 1. For wy4/kT = 0 (no inter-
action) all quantities in equations (1.27) and (1.28) are zero. Further, for v—>00 we have
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ISOMORPHOUS REPLACEMENT IN ALUMINOSILICATES 645

opo—>0 and Dy, -2, and the quantities in equations (1.28) approach the corresponding
quantities in equations (1.27), so that the difference between results obtained using the two
approximations then tends to zero. It can also be demonstrated that for Z, = = 1 and thus
0% = 1 the value of 4% from both expressions for Fintis w, , [kT.

A comment may be made concerning the empirical near-linear plots of In K, against 4. or B,
first observed by Kielland (1935), which require that

Inf, = 2.303 CBg,}

1.2
Infy = 2.303 CA42, (1.29)

where C is a constant. First, it can be seen from equations (1.26)—(1.28) that for 4 > 1 the
expression for Fint given in equation (1.16) cannot lead to truly linear plots of In K. against A,
even for a uni-univalent exchange. Secondly, for the Barrer—Falconer expression for Fint (equa-
tion (1.18)), and if Z, # Zy, linear plots cannot be obtained either, because of the first term on
the right in equations (1.26). On the other hand, if Z, = Zj this first term vanishes and equations
(1.26) reduce to equations (1.29), where, as shown by Barrer & Falconer (1956)

WA
C= 3303z, 757" (1.30)

(¢) The free energy function

By dividing equation (1.11) by N, and replacing numbers of cations and sites by equivalent
cation fractions one obtains
Ac Bc Bc

+s,=g(F) = —171n77+z In Z—A+—Z—Bl Z.

Ac. B. 4. B Fint
-z (-7 et 00
where s;=1In (JllalZB/J}x/ZA),

F
NkT

1 (1.32)
—IHJB +nG1nJG +1HPL.
Zy

The J are assumed to be independent of 4c, and we have a given total charge, N, of the crystal

and assumed constant Ng. The quantity (F/NyAT +s5,) = g(F) will therefore be plotted against
the cation fraction, 4., of the incoming cation. The properties of the function g(F) will be

S2=

discussed later.
(7) The ton-exchange isotherms

The following comments can be made on equation (1.14)

(i) s, 7 and 4% (which is a function of w, [k T, v, 9, Z,, Z) are primary quantities, dependent
only on the properties of the crystal, and determining the affinity of exchange. The calculated
K, is the secondary quantity dependent on the above primary quantities and the quantity y given
by equation (1.15). K, will therefore have different values depending on which approximation
for Fint we choose, and cannot be assigned a priori. It is evident from the captions to figures 1-6
how the different values of intrinsic physical properties of the crystal can result in very different
values for K,,.

(ii) If we are considering specific ion pairs, y can be evaluated from standard electrode
potentials, E®. Thatis, u® = — |Z| FE® for anion of charge Z and where F is the Faraday con-
stant. Thus y is a known constant for any specific cation pair.

44 Vol. 285. A.
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E 8 Ficure 1. The curves of g(F) against 4, (lower graphs) and the ion-exchange isotherms (upper graphs) for

Z, = Zy = 1and 9 = 1. Curves 1 were obtained from the Barrer-Falconer expression for F**; curves 2—4 were
obtained from a refined expression with v = 2 (curves 2) ; ¥ = 4 (curves 3) and v = 6 (curves 4). For (a) and (b),
wyfAT = 2.303;s; = —2.303; for (¢) and (d), wy, kAT = —3.454, 5, = 3.454. KV = KPP = K® = K = 1.0
for all values of w,,jkT. All isotherms were calculated assuming y = 0. Miscibility gaps are indicated by
dashed lines. Curves 4 are omitted in (a), (b) and (d) for clarity.
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(iii) For Z, = Zg the sum of the first three terms in equation (1.14) iszero. Thisis not the case
however, when Z, # Zg. Consequently, even for no pair-wise interaction (w,,/k7T = 0) each
assigned value of 9 will lead to a different isotherm. This can be seen by comparing figure 56 and
figure 6 5.

(b) (d)

Ficure 2. The curves of g(F) against 4, (lower graphs) and the ion-exchange isotherms (upper graphs) for
Z, = Zy = 1and 7 = 1. Curves are numbered as in figure 1. For (a) and (), w, kT = —4.605, 5; = 4.605;
for (¢)—(d), wua kT = ~6.908, 5; = 6.908. KV = K® = K® = K» = 1.0 for all values of w,,[kT.

Characteristic ion-exchange isotherms (figures 1-6) were calculated as follows. The para-
meters Z,, Zg, v, war/kT, 1, s, and (Z, m® +Z;mP) were specified. w,,/kT was given such
values as to lead, in the Barrer-Falconer approximation for Firt to C = —1, + 1.5, +2 and +3
respectively (equation (1.30)). For easiest presentation of the results, s; was given such a value
as to lead, in conjunction with other variables, to QK, = 1 (equation (1.4)) when the Barrer—
Falconer expression was used. This was done to obtain isotherms not too close to the axis on the
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diagrams, and thus easily comparable. (Z,m® + Z;mP) was taken to be 0.01 mM; at low ionic
strengths the ratio of the activity coefficients in the solution is very close to, and was taken as,
unity. The calculations were performed for values of 7 of 1 and 2. Next, K, was calculated from
equation (1.14), using both the crude and the refined expressions for Fint. For generality, no
particular pair of cations was chosen and it was assumed that y = 0. The value of y, being only
an additive term, does not affect the conclusions. In any case, instances of two cations producing
X = 0 can be found in practice (the pair K+/Rb*). Next, the ratio of activity coefficients in the
crystal was calculated from equations (1.26) for each value of 4. using a computer program.
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Ficure 3. The curves of g(F) against 4, and the ion-exchange isotherms for Z, = Z; = 1 and 9 = 2. Curves are
numbered as in figure 1. For (a) and (b), w,, kT = 2.303, s, = —1.151, K’ = 1.0, K® = 1.370, K® =
1.178, K, = 1.116; for (¢) and (d), wy,JkT = 0, 5, = 0, K = K® = K® = K® = 1.0; for (¢) and (f),
wyu kT = —3.454, 5, = 1.727, K& = 1.0, K? = 1.950, K® = 1.436, K = 1.278.

As was then calculated for each 4. from the implicit equation (1.2). The results were drawn in
figures 1-6 as plots of 4s against 4c. The properties of the ion-exchange isotherms are discussed
later.
(k) Calculation of the function g(F)
As in the expression for K, (equation (1.14)), the expression for g(F) (equation (1.31)) contains
A as the independent variable and the constant parameters Z,, Zy, v, w, 4 [k T, 7 and s5,. As g(F)
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describes only the properties of the crystal, it is not necessary to specify (Z, md +Zzm®) or to
make any assumptions regarding y. g(F) has then been calculated from equation (1.31), as a
function of 4. using a computer program, for each of the two expressions for Fnt, The influence
of each parameter has been explored and, to facilitate discussion, g(F) has been plotted alongside
the isotherms for the same values of the parameters (figures 1-6). The conclusions are as follows.
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Ficure 4. The curves of g(F) against 4, and the ion-exchange isotherms for Z, = Zy; = 1 and # = 2. Curves are
numbered as in figure 1. For (a) and (b), w,,JkT = —4.605, 5, = 2.303, KV = 1.0, K¥ = 3.025, K& =
1.876, K = 1.539; for (¢) and (d), w,JkT = —6.908, s, = 3.454, KO = 1.0, K? = 8.414, K® =
3.804, K& = 2.569.
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Firstly, the free energy curve always begins to decrease as 4¢ increases from zero or decreases from
unity. This is on account of the logarithmic function in the entropy of mixing. Secondly, the
course of g(F) against 4. for intermediate compositions depends principally on the value and
sign of w,, [k T. Three cases can be distinguished.
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Ficure 5. The ion-exchange isotherms for Z, = 2, Z; = 1 and 5 = 1. Curves are numbered as in figure 1. For
(@), wonlkT = 2303, 5, = 2.074 K@ = 0.02, K? = 0.02739, K® = 0.02355, K® = 0.02232; for (),
waulkT = 0,5, = 2,649, KV = K® = K® = K® = 0.02; for (c),wAA/kT_ —3.454,5, = 3.513, Km = 0.02,
K®» = 0.03901, K® = 002872 K(‘“ = 002556 for (d), wAA/kT_ —4.605, s, = 3.800, KV = 002 K® =
0.06050, K = 0.03752, K = 0.03079; for (c), wy,JkT = — 6.908, 5, = 4.376, KD = 0.02, K® = 0.1683,
K® = 007607 K" = 005139

Case 1

When w, ,/k T is sufficiently negative (i.e. when the cations tend to segregate rather than form
a homogeneous phase) the curve of g(F) either contains a double minimum and a maximum
(curve 1 in figure 14d) or is so shaped that a tangent line can be drawn below the curve and
touching it at just two points (curve 4 in figure 4d). Whether the tangent line is horizontal
or sloping depends entirely on the value of s, through the term s, 4c. s, can always be chosen so as
to produce two minima of equal depth. Case 1 corresponds with two-phase regions (miscibility
gaps).
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Case 2

When wy, /AT = 0 (the cations A are indifferent to their neighbours) g(F) has a single
minimum well away from either 4. = 0 or 4c = 1 (figure 3d). The precise position of this mini-
mum is modified by ;.

Case 3

When wy /AT > 0 (the cations A avoid each other) g(F) has also a single minimum, but
deeper than in case 2.
(1) Comparison of isotherms and of free energy curves
The application of the two different expressions for Fint leads to conclusions which can be
summarized as follows:
(i) Equations (1.27) show that for arandom distribution of cations in the crystal isotherms and
the curves of g(F) against 4. are independent of v. This is not so in the more refined expression

(a) (b) c)

: |
04 0.8

Ficure 6. The ion-exchange isotherms for Z, = 2, Z; = 1 and 5 = 2. Curves are numbered as in figure 1. For
(@), waaJkT = 2.303, s, = 1.407, KV = 0.02, K? = 0.02654, K® = 0.02359, K® = 0.02244; for (),
wuufkT = 0,5, = 1.694, KV = K‘z) = K® = K = 0.02; for (c), wAA/kT_ —3.454, 5, = 2.126, K(l) = 0.02
K? = 0.04922, K& = 0. 03157 K(‘” = 0. 02699 for (d), wM/kT—- —4.605, s, = 2.270; KV = 0. 02 K® =
0. 09257 K® = 0. 04520 K® = 0. 03429 for (), wy [k T = —6.908, 5, = 2.558, KV = 0. 02 K® = 0. 4177
K® = 0.1211, K® = 0.06794.
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(equations (1.28)). In accordance with the comments following equations (1.28) the difference
between the plots obtained with these two expressions decreases as v increases.

(ii) In uni-univalent exchanges with # = 1 the plots are symmetrical with respect to 4c = 0.5.
Both approximations for Fint then lead to the same value of K,,. In view of equations (1.28) and
(1.14) we have in this case InK, = —s;+y—w0, 0k T
For 7 > 1 the plots can no longer be symmetrical, and each approximation leads to a different
value of K,. In uni-divalent exchanges the difference between the K, obtained for different v is
considerable, and increases also with increased 7. As a result the isotherms and the plots of g(F)
become very different in these cases (see, for instance, figures 2¢ and 4 and figures 4¢ and d).
This shows that where w, /A7 < 0 the assumption of random siting of ions A becomes very
inadequate, particularly when Z, # Zg.

(iii) For random siting of cations the shape of all curves depends on the ratio wy , [7k T (related
to Kielland’s ‘C”). In the more refined treatment the influence of w, , /£ T, 7 and additionally »
must be considered separately. For w, ,/kT > 0 the difference between curves calculated using
the two approximations for Fint is small (figures 1a, 34, 5a, 6a). Of course, when wy /AT = 0
both approximations produce the same isotherm and free energy curve. The difference referred
to above becomes greater when w,, /AT < 0 and thus the ions of A tend to cluster. Even so, the
difference between various such curves is in fact less than it would at first appear from the theo-
retical plots, because of the miscibility gaps (figure 24). The equilibrium course of exchange is
then marked by the dashed lines.

(iv) In practice K, can be determined from experimental ion-exchange isotherms, while
v and 9 can be found from crystallographic data. Z, and Zg are of course known. However, 5, and
waalkT, although both clearly defined physical quantities, cannot be directly measured. In
order to simulate an experimental isotherm, one has to find w, /AT and s, by trial and error,
bearing in mind that they must be compatible with the experimentally measured value of K,
(equation (1.14)).

(v) In uni-univalent exchanges the existence of miscibility gaps requires larger and larger
values of wy 4 [k T as 5 increases. This is evident from the comparison of figures 2 and 4. The exist-
ence of miscibility gaps is also very strongly dependent on the valency of the cations involved
(compare figures 2 and 5). Miscibility gaps in uni-divalent exchanges are less likely than in
uni-univalent exchanges. One such case of immiscibility in the Na = Sr exchange in a synthetic
faujasite was reported (Olson & Sherry 1968). It is however not easy to analyse the isotherm in
view of the high concentration of the external solutions used (Z,m+ZzmP = 0.1m). For
Z, # Zy the position of the isotherm depends strongly on aqueous concentration (Barrer &
Klinowski 1974 a); also the ratio of aqueous activity coefficients is no longer nearly unity.

(m) Limited mutual miscibility of the end members of exchange

A line connecting the points 4c = 0 and 4c = 1 on the diagram of g(F) against 4. represents
the values of g(F) for the physical mixture of separate A- and B-crystals, while the g(F) for their
solution, i.e. the (A, B) mixed crystal, is of course given by the function itself. Similarly, a line
connecting any two points on the curve of g(F) corresponding to compositions 4, and 4, repre-
sents the values of g(F) for the physical mixture of crystals of compositions 4, and 4;. For cases
2 and 3 such a line always corresponds to a higher free energy than the curve itself. However, for
case 1 of § 1 (k) it is always possible to draw a straight line touching the plot of g(F) against 4. at
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just two points and lying entirely below. This is shown by the dashed lines connecting A, B and
A’, B’ in figure 7 b. This means that there is a region within which a physical mixture of crystals
of compositions A4, and 4 has a lower free energy than the homogeneous phase. The resulting
mixture of crystals can have the overall composition anywhere between A, and Ag; its g(F) is
simply a proportional intermediate value between the g(#) of the two phases. In this region the
calculated exchange isotherms develop a loop.

ITtis seen from figures 1-6 that the presence and the size of the two-phase region for a given pair
of cations depends in the case of the Barrer-Falconer expression for Fint on the parameters
wpa/kT and 9; and in the case of the refined expression for Fint additionally on ». Conditions
which must be fulfilled if a miscibility gap is to exist will be considered further.

By differentiating equation (1.31) with respect to 4. one obtains
Ay _4g

)+SI+Z;——Z—B. (1.33)

de(F) 1, A4 1, Be (_1___1_) In ( 4B
dd. ~Z,"Z, 7y "z, \Zy Z,) "\ Z, 7 Z,
It follows that s, does not change the shape of dg(#)/d4. but only its position (compare curves 1

and 2 in figure 7 4). For the two phases to be at equilibrium, the work on going from A to B by
path AB must be equal to the work for the path ADCEB, so that the integral

Aedg(F)
d4
f a4y dde TF

is equal to the area of the rectangle determined by the line A’B’ and its crossing points with the
curve of dg(F')[d 4. against 4.. A particular case of such a situation arises when both these areas
are zero (curve 1 in figure 7 a). In the plot of g(F) against 4. there are then two minima of equal
depth (curve 1 in figure 75). The following conditions must be fulfilled for two phases in
equilibrium:

(i) Pairs of points A, Band A’, B’ in figure 7 & must lie on #fe same tangential line to the plot of
g(F) against 4c. If the common tangent has intercept 4, the equation of this tangent is

dg(F)

and the slope is the same at 4, and 4. Therefore, at these points

=[P - [ 62| 4i = rotrr - [,

o | =%

(1.34)

where [g(F)], [g(F)]", [dg(F)[dAc]" and [dg(F)[/dAc]" are the values of g(F) and dg(F)[d 4. at
compositions 4; and A; respectively. Inspection of equations (1.34) in conjunction with equations
(1.31) and (1.33) shows that both equations (1.34) are independent of s,.

(ii) A tangent touching g(F) at two points implies two points of inflexion between 4, and 4
(Rushbrooke 1949 4); that is two points at which d2g(F)/dA42 = 0. The reason for this is obvious
from figure 7a. To find the points 4, and Ay, i.e. the limits of the miscibility gap, the implicit
equations (1.34) were solved using a computer program. Calculations were made for different
values of the coordination number » and the results represented as plots of — k7w, , against 4e,
thatisin a similar fashion to phase diagrams. The results are summarized below for uni-univalent
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exchanges. The Barrer—Falconer approximation leads to a universal ‘phase diagram’, inde-
pendent of v, provided one plots —k7%/w,, against Ac. This shows a miscibility gap which
narrows as —k7Tn[w,, increases (figure 8a). Thus for a given material the miscibility gap
narrows with increased temperature to vanish at —k7%/w,, = 0.5 (in terms of equation (1.30)
corresponding to C' = 0.87). This is in agreement with the experiments of Orville (1963) in
which the miscibility gap in Na = K exchange in felspars narrows and finally vanishes with
increased temperature. For # = 1 and the refined expression for Firt the phase diagram is similar
to that for the Barrer—Falconer approximation, but the two-phase region disappears at lower
values of —kT|w,,, depending on v. For Z, = Z; =1 and 5 = 1, equation (1.33) is sym-
metrical with respect to the point Ac = 0.5. Consequently the phase diagrams in figures 8 2 and &
are symmetrical. The symmetry of the miscibility gap is sensitive to . Figure 8¢ shows this gap
for = 2. When the temperature is high enough all the phase diagrams show only a single phase.

(a) (0) (c)
0.5 — —
2
g 5
& ~
5{: 0.3 - — n
2 2 =
S <
1
0.1 - -
1 L ] I | | | | | ] | ]
0 04 0.8 0 04 0.8 0 0.4 0.8
A

Ficure 8. Plots of —kTnfw,, against 4, (figure 84) and —kT|w,, against 4, (figures 8 b,¢) for Z, = Z,
(a) Barrer-Falconer approximation for F™, (b) 7 = 1. For curve 1 v = 4; for curve 2 v = 6. (c) 7
Curves are numbered as in figure 85.

1.
2.

It was next demonstrated numerically that the dashed line connecting the points on ion-
exchange isotherms corresponding to 4; and 4 (e.g. figure 7¢) always bisects the isotherm into
parts of equal area. This was shown for all exchanges in which Z, = Zy, and also for Z, = 2 and
Z;, = 1. This property of ion-exchange isotherms is independent of 7, w4 kT or K,.

(n) Discussion

It is seen from many of the ion-exchange isotherms (e.g. figures 22 and ¢) and from the phase
diagrams (figure 8) that the lower temperature boundaries of the two-phase regions often
correspond with an extremely low content of the incoming cation in the crystal. Iiyama (1974)
considered such low concentrations for a number of alkali and alkaline earth metal ion exchanges
in aluminosilicates. He suggested a model involving ‘forbidden’ zones around each incoming ion
which no other incoming ion, A, could occupy, but which were accessible to the ions B. Apart
from the difficulty of explaining the required large forbidden zones this approach seems unsatis-
factory in its quantitative aspect. The expression given for the maximum number of cations does
not allow for the possibility that additional sites are excluded for A by several nearby ions of A,
because, although the sites in question are outside the forbidden zones, these zones are too close
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together to permit another entering ion of A plus its exclusion zone to be inserted among them.
On the other hand limited solid solubility as formulated in the present §1 is adequate to
explain very low solubilities of the entering ion A in the B-rich medium (figure 8). There is no
need to postulate, as did Iiyama, that low solubility means that replacement of B by A must be
extremely endothermal. It is the extra negative energy 2w, /v which is involved when two ions A
occupy adjacent sites which determines the boundaries of the phase diagram and hence the low
solubility of A in the B-rich crystal and of B in the A-rich form. This energy need not be very great
to produce the observed behaviour, as our analysis shows. It is not necessary that both A- and
B-rich forms be realizable; the form with a little B in the A-rich matrix could be replaced by
a third more stable structure with a quite different framework topology. For example, Rb-
analcime is more stable that Rb-felspar and would tend to replace this in a K = Rb exchange in
felspar (Barrer & McCallum 1953).

When there is limited mutual solid solubility of the end members of the exchange reactions the
phase separation can be manifested in several ways. Firstly there would be physical separation
of A-rich crystals from the parent B-rich ones, the amount of B-rich material decreasing as the
amount of A-rich crystals increases. This is the equilibrium situation considered here. However,
it is also possible for nuclei of A-rich phase to grow on or in a matrix of the parent phase, either as
three dimensional domains, or, as in some (Na, K)-felspars, as perthitic structures in which layers
of crystal rich in A alternate with layers rich in B (Bragg & Claringbull 1965). In layer silicates
also there may be interlamellar cation layers rich in one ion interstratified with layers rich in the
other (Sawhney 1967; Barrer & Brummer 1963).

In all cases where domain, perthitic or interstratified structures occur as a result of the tendency
to phase separation, two extra, positive free energy terms are involved. These are due to strain
arising from misfit between the chemically different parts, and to interfacial free energy. Because
both are positive they tend to delay the appearance of the new phase beyond the true equilibrium
points both for forward and reverse reactions. The result is hysteresis in the isotherms which may
be extreme (Barrer & Falconer 1956) or small (Barrer & Munday 1971¢) and which may result
in some interesting history-dependent effects (Barrer & Hinds 1953). These considerations fall
outside the scope of an equilibrium treatment but are of importance both in nature and in the
laboratory.

2. CATION EXCHANGE WHEN MORE THAN ONE KIND OF EXCHANGE SITE
IS PRESENT

(a) Introduction

In zeolites it is more usual than not to find the exchangeable cations in several crystallo-
graphically distinct kinds of position, so that a number of site groups need to be considered. Sites
belonging to different groups are intimately mixed together throughout the crystals. For
example figure 9 (Schoonheydt 1975) shows some of the positions which cations occupy in the
faujasite structure. Itis also known that in homoionic forms the cation populations in the different
site groups may differ for different cations (cf. Smith 1971). This happens in part because the
number of possible sites exceeds the number of cations needed to neutralize the negative charge
of the framework. It also arises in part because the smallest scale local electrical neutrality is not
fully achieved within the crystals, as shown by the strong affinity between zeolite sorbents and
dipolar molecules (NHjg, H,O, SO,), indicating the presence of big local electrostatic fields, and
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between zeolite and quadrupolar molecules (N,, CO,) indicating large local field gradients. This
evidence is supported by calculations of fields and field gradients within zeolites (Barrer &
Gibbons 1963; Dempsey 1968; and Bonnin & Legrand 1975). Thus virtually equivalent, if
incomplete, approaches to local electrical neutrality may be equally well satisfied by several
distributions of the cationic charge between site groups. In this Part the general problem of
exchange equilibrium on an exchanger providing more than one kind of site, and some limiting
cases, will be considered.

e O
o 0O,
) o
(0 o
hexagonal
/ .
/ y prism
- = A /
N
/ A
2R}
- _[ \ III:
. | - . -
: Tl 1 . " :
I _‘_,F‘I' I U 11 E 1I H;
< i = 111
\ . 7/
\ </
~— \
i \
supercage \\
sodalite
cage

Ficure 9. Cation positions in faujasite. Positions are numbered I, I', U’, II’, I1, IT" and III’. The diagram also
indicates the four kinds of oxygen site.

(b) The model

There are assumed to be z kinds of site in the crystalline exchanger. The number of sites in
the 7th site group is N; and the amount of cationic charge located on this site group is &, ; where

No,i = Zs Ny ;+ZgNg ;. (2.1)
Ny ; and Ny ; are the numbers of ions of A and B of charges Z, and Zj in the :th site group.
The total cationic charge, N, is equal to the total anionic charge and is

Ny=2Z,Ny+ZgNg = _gl N, i = ;1 (ZsNy,i+ZgNg,y), (2.2)

where N, and Ny are the total numbers ofions A and Bin the crystal. The N, ; could be functions
of Ny ;/Ng,; (§2 (a)). Also, if N is the total number of crystallographic sites available for cations

N= 3 N, (2.3)
=1

As before, the crystal may be considered as a solid solution of two components, AL, and BLy
where L, is the amount of anionic framework associated with an A ion and carrying anionic
charge Z, and Ly is this amount of framework associated with B and carrying anionic charge Zy.
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658 R. M. BARRER AND J. KLINOWSKI

As noted in § 2 (a) total cation populations in a given site group may vary according to the
nature of the cation so that various distributions of cations among site groups, different for
different cations, may reasonably satisfy local electrical neutrality conditions. Accordingly the
overall partition function F; for the mixed crystal is written as

B- 3 P (2.4)

Na,i NB,i

where N N N
_ .= it N JN ; JNa,: pNo,
£ 1:I=Il b z£11 Ny, it N, it (N; = Ny s — Mg 4)! JA’@‘JB’JJGWPL’OJ (2:5)

Jy,; and Jg,; are respectively the partition function of a cation A, and a cation B in the :th site
group. Jgﬁ:f, the partition function for the Ny ; guest molecules, includes the configurational
term C(Ng, ;) asin § 1. B, ; is the partition function for that amount, [(Si,Al)Oyq 4], of frame-
work carrying one negative charge and associated with the ith group. The N, ,, Ny ;, J; and A, ;
may firstly be functions of the overall composition of the mixed crystal of AL, and BLg. In
addition the A}, ; and J; would not for a fixed composition depend on the assigned values of the
Ny, ; and Mg ; in equation (2.4). The J; contain terms exp (—e¢;/kT") where ¢; is the energy of
binding in the 7th site group. If the choices of N, ; and N ,in the summation in equation (2.4)
result in serious local disbalances of positive and negative charge then, through the terms
exp (—¢€/kT), theJ, ;and Jy ; will be very small for such distributions so that the corresponding
terms of the summation will also become very small. For pure A-crystal and pure B-crystal the
corresponding partition functions follow from equation (2.4) by omitting terms Ny ;, Jp ; or
Ny, 5 Ja,; respectively from the factorials and summation in the expression for P,
For the exchange reaction
Zy As+Z,(BLy) - Z, Bs+ Z(ALy) (2.6)

the thermodynamic equilibrium constant is given by equatién (1.14). For the exchanger capable
of full exchange for either A or B ions the standard states of AL, and BLy, defined asin § 1 as
pure A-crystal (AL,) and pure B-crystal (BLy), then the standard chemical potentials derived
from equation (2.4) are

Ff, = rfu, = -RTInPE, =-RT 3 P, (2.7)
VA, i

Ffiy = iy = ~RTIP§, = ~RT % P. (2.8)
B,i

The term (Zypuf, —Z, ¢8,) in equation (1.14) is readily obtained from the standard electrode
potentials of the ions A and B in solution and K, can be obtained from experimental data by the
method of Gaines & Thomas (1953). Thus (Z, #§y, — Z5#51,) can be found. Alternatively, in
principle K, may be calculated from (Zy 8. — Z, #§,) and the standard state partition functions
P®. In practice, however, the P® cannot be evaluated for this most general case, but the
summation in equation (2.4) is replaced by its largest term, P, with no sensible error.

If one now considers P; for one equivalent of cationic charge on the 7th site group one may
readily show that In P, = X;In P; where X; = N, ,/N, is the fraction of one equivalent represented
in equation (2.5) by &} ;. Accordingly one may rewrite equation (2.5) as

n
P = 1] P} (2.9)
i=1
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ISOMORPHOUS REPLACEMENT IN ALUMINOSILICATES 659

Using equation (2.5) and the standard relation between the partition function and the Helmholtz
free energy F of the crystal one obtains for each site group

F;= —kT[N;InN;— N, ;In N, ;— Ny ;In Ny ,— AN, In AN, + N, ;InJ, ;

+Np,iInJp s+ N, InJg s + N In B, 4], (2.10)
and for the entire crystal F=— % F,=— % X, F, (2.11)
i=1 i=1

where F; = —kTInP; and AN, = N,— N, ,— Ny ;.

(¢) All site groups fully exchangeable with respect to both A and B

Pure B-crystal is the starting material. Assume that the electrical charge on each site group
must be neutralized by cations on this site group only (i.e. the N, ; are now independent of the
composition of the crystal). As before, the standard states are pure A- and B-crystals. (4§, ); and
(#8r,)s are chemical potentials when Ny ; = 0 and N, ; = 0 respectively. Jy ; = J; when
Ng ;=0,and Jp ; = J§; when N, ; = 0. From equation (2.10) one has when N, ;, = Avogadro’s
number of lattice-forming units AL,, so that N, ;kT = RT,

(#8u,)s = —RT[Zyn;InZy 9, — (Zyn;— 1) In (Zy9;— 1) +In T 55+ Zy n§; In JE + Z, In P,
(2.12)
where J§ ; and Pf; are the values of Jg ; and P, ; for N ;, = 0. 9, is defined as the ratio Ni/No’ :
and ng,; = Ng, /Ny, ;- Also, for (BLy);

(#8Ly): = —RT[Zgn;InZygn,— (Zgn;— 1) In (Zgy; — 1) +In I ; + Zgng, ; In J§ ; + Zz In PR ],
(2.13)

where J% ;, n& ; and P§, ; are the values of J; 4, ng,; and B, ; for N, ; = 0. We then have for the
thermodynamic equilibrium constant on the ¢th site group

InK; = (Z,(4Fry) i — Zu(#R,)i + Zo 8, — Zo18) |IRT (2.14)
while In K, is given as before by equation (1.13). From equations (2.12)-(2.14) one obtains
InK; = Z,(Zgn;— 1) In(Zgy;—1) = Zg(Zyn;— 1) In (Zy0;— 1) + Z Zy7;In (Z, | Zy)
+1n (J:,%B/Jﬁ,zi“) +ZyZgIn (PE,[PE ) + Zy Zyn§ ;InJE  — Zy Zyn ;In T4 ; + x,
(2.15)

where y = (Zppu8 —Z,p18,)[RT (equation (1.15)). Also, as expected from equation (2.9),

InK, = ﬁlXiln K. (2.16)
i=
In this way, the individual and the overall equilibrium constants are expressed in terms of defined
physical quantities. For Z, = Zy = Z equation (2.15) simplifies and becomes independent of 7,.
If the J; are constant and independent of the degree of exchange, each site group is ideal, i.e.
(K¢); = K;. Barrer & Klinowski (1972) derived the following expression for the overall Kielland
quotient, K¢, in terms of these quotients, (K¢);, for the individual site groups:

n Zy n Zy
Ke= (z; XiAi) / ( XiAiZB/ZA(KC);UZA> . (2.17)
i=1 i=1
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660 R. M. BARRER AND J. KLINOWSKI

When there is more than one site group, the result of this division is a polynomial with an infinite
number of terms in 4;. K. cannot therefore be constant, which would be necessary for the overall
exchange to be ideal. Consider a crystal containing several groups of sites, the behaviour of each
site group being that described in § 1. This involves specifying Z,, Zg, 1;, v;, wx,¢/k T and K, for
each site group. The ratio of activity coefficients, E; = fZ2/fZ4 is then calculated for any given 4,
using equations (1.26). Itis assumed that the extra energy arises only when a pair AA belongs to
the same group of sites. The overall ion-exchange isotherms are calculated as follows. Since each
site group is in equilibrium with the same aqueous solution, 4 for any given 4, is calculated from
the equation:

K; Q1 — 4% (4s)7» — (4y)%» (1 - 4s)?+ TE; = 0, (2.18)
where @ and I" have been defined by equations (1.5) and (1.6) respectively. Further, the com-
position of any other site group, j, can be calculated from the relation

Ki(1—4;)% _ K;(1—4;)%

- 2.19
E,4%s E, 47 (2.19)
(a) (b)
0.8 —
III 1V,
L - L
4, I v
04 - 111
L | | 1 1 1 | | [ | | |
0 0.4 0.8 0 04 0.8 0 04 0.8
A

Fiure 10. Ion-exchange isotherms for different values of w,,/£T in uni-univalent exchanger composed of a single
group of sites described by the model considered in §1. # = 1. (a) For curve I, w,,/kT= 0 and K, = 0.2; for
curve IT, wy,/kT = 0 and K, = 5. The shape of curves does not depend on % and v (ideal isotherms). (b) For
curve III, wy,[kT = 2.303, v = 4 and K, = 1; for curve IV, w,, kT =—-2.303, v = 4 and K, = 1.
(¢) wppfkT =—6.908 and K, = 1. For curve V, v = 2, for curve VI, v = 4; for curve VII, » = 6.
Miscibility gaps are marked with the dashed line for VI and VII.

Equation (2.18) has been solved for 45 and equation (2.19) for 4; using a computer program.
The overall equivalent cation fraction of A in the crystal is then

4o = iﬁl X, 4, (2.20)
where the individual X; are known. The ion-exchange isotherms are plotted as 4y against 4.
Calculations were performed for a crystal containing two groups of sites with different kinds of
non-ideality. Results are given in figures 10-12 and can be summarized as follows:
(i) Aspredicted from equation (2.17), figure 11 a shows that even two ideal isotherms, I and IT
in figure 104, do not produce an overall ideal isotherm. For example, curve 2 in figure 114
corresponds with K, = /(5 x 0.2) = 1, and yet the isotherm is not a straight line.
(ii) By combining an isotherm with a miscibility gap with any continuous isotherm (figures
11¢ and d) one obtains a resultant isotherm with a miscibility gap. For instance, as pointed out


http://rsta.royalsocietypublishing.org/

) |
o \
C

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ISOMORPHOUS REPLACEMENT IN ALUMINOSILICATES 661

in § 1 (/), a sufficiently high and negative wy 5 /k T results in a miscibility gap. These features are
preserved in the composite isotherms. The size and position of the resultant miscibility gap
depends on the relative population of each site group participating in the composite isotherm.
It is seen that diverse isotherm contours can be obtained. Some metastable contours are unusual
in the immiscibility range. However, the real course of equilibrium exchange in the miscibility
gap is that given by the dashed lines, as explained in § 1. In practice isotherms showing immisci-
bility are also subject to hysteresis (Barrer & Munday 1971; Barrer & Falconer 1956) arising from
the difficulty of nucleating the new phase on or in a matrix of the parent phase.

(a) (b)

0.8— ~

04— -

0.8— -

| | I | | | | |
0 04 0.8 0 0.4 0.8

Ficure 11. Overall ion-exchange isotherms for a crystal with two groups of sites. For curves 1 the relative popula-
tion of the first site group, X; = 0.2; for curves 2 X; = 0.5; for curves 3 X; = 0.8. For clarity only curves
1 and 2 are shown in (¢) and (d). Miscibility gaps, whose horizontal position is common for both curves, are
marked with dashed lines. (a) First site group has properties described by curve I; second site group by
curve Il in figure 10a. (b), (¢) and (d) give combination isotherms for (b) I+1II; (¢) I+ VII; and (d) II + VII.

(d) Two site groups: one excluding A and the other excluding B

In aluminosilicates not all kinds of site need be available to both exchange cations. For instance,
as noted in the General Introduction, in faujasite all of several types of site are available to the
sodium cation (Smith 1971), while tetramethylammonium cations must, for reasons of size,

46 Vol. 285. A.
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662 R. M. BARRER AND J. KLINOWSKI

occupy exclusively sites nearer the middle of the large faujasite cages. As a first approximation,
we consider all the sites available only to sodium as group 1, and the sites nearer the middle of
large cavities as group 2. Sodium cations are not expected appreciably to occupy group 2 sites.
The model reduces in its simplest form to considering two site groups, one accessible only to
ions A, the other available only to ions B.

(a)
0.81-
3/ 2/ 1
04 C
~ 5/ s
4, 0 ! 1 L 1
()
0.8~ -
B s/lIL 3f 2[ 1
2
1
04l 1 2 3 -
1 2f 3
! | 1 | | | | !
0 04 08 0 0.4 08
4,

Ficure 12. Overall ion-exchange isotherms for a crystal with two groups of sites. For curves 1 X; = 0.2; for
curves 2 X; = 0.5; for curves 3 X; = 0.8. (a), (), (¢) and (d) give combination isotherms for (a) III+1IV;
6) IV+V; (¢) II4+V; (d) IIT+ V.

Equation (2.5) does not require that all site groups be accessible to both A and B. When some
types of site admit only one kind of ion, the appropriate N, ; or Ny ; in equation (2.5) are zero.
When there are just two site groups one accessible only to A and the other only to B, ion exchange
cannot be reconciled with the requirement in § 2 (¢) that the negative framework charge on each
site group be neutralized by cations on this site group only. Cations on both types of intermixed
site must neutralize a common electrical charge. It does not follow, however, that the crystal is
completely exchangeable with respect to both cations. The theoretical limit of exchange with
respect to the incoming ion, A, is determined by the number of A ions required to neutralize the
framework charge. On the other hand, this absolute limit may not be reached for other reasons.
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One may be that the size of A cations restricts their number in a cavity for lack of space; another,
the limited polarizability of the anionic framework and resultant local charge disbalance as
ions B on one site group are replaced by ions A on the other. Consider site groups 1 and 2 having
a total charge N;. While this charge can be neutralized by cations A on sites 1 and cations B on
sites 2, the framework charge appropriate to either group of sites must remain constant through-
out the exchange. Py, and Py, are the partition functions for the amount of framework carrying
one negative charge and associated with the site groups 1 and 2 respectively. Let there be N sites
of type 1 available for cation A and N, sites of type 2 available only for B. If N, ions of A and
Ny ions of B are present one has

Ny =Ny,1+ Ny o = ZyNy+Zy Ng. (2.21)
The partition function for this amount of mixed crystal is

N N,

L TG ASS A TN ATEASS A TRE

JNaJNs JNo PZANs P2 Ng, (2.22)

where the J and the P, may be functions of the cationic composition. All quantities under the
factorial in equation (2.22) must be greater than or equal to zero. One must therefore have

N,—N, >
} (2.23)
Ny,—Ng >0
Dividing the above by N, and setting N[N, = 9, and N,/N, = 7, one has
—Ace]Zy >0
olZa } (2.24)
—Bi|Zg >0

For pure B-form to exist, one must have 7, > 1/Zy. The absolute limit to exchange with respect
to the incoming ion A is the smaller of the two quantities

Ay =Zy 771,}

max _ 1 (2.25)

As already noted, however, A12* can be lower than the above theoretical value.
When ion exchange cannot proceed to completion the exchange reaction can be represented as

[BIIZB L]C + amax[A1/4 A]s = [Aamax/z A B(l-—acm,,x)lZB L]C + O‘max[B:LZ/%E]Sﬁ (2'26)
(component 1) (component 2)

where &, is the number of equivalents of [AZs+]s which reacts with one equivalent of B-crystal
to produce maximally exchanged material. It follows that 0 < ap,y < 1. Also, i,y is determined
by whichever of the three causes (number of sites available for A; charge disbalance; large size of
A ions) imposes the lowest limit to exchange.

All realizable solid compositions can be considered as solid solutions of component 1 with
component 2. By mixing ¢; moles of component 1 and ¢, moles of component 2 we arrive at a
composition for which the numbers N, and Ny are as follows:

N, = QZZB Pmax
4 ZB Opmax + ZA ( 1- O‘max) ’

9a ZA(l — O‘max)
ZB Omax + ZA(I - a’max) ’

(2.27)

Ng=q1+
46-2


http://rsta.royalsocietypublishing.org/

Vi
A X

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

664 R. M. BARRER AND J. KLINOWSKI

In addition

M =Ny =Zyn Ny +ZB771NB3} (2.28)

Ny = 13Ny = Zy 13Ny + Zg 75 Np.
From equation (2.22), using Stirling’s approximation, one has
F=—kT[NInN,+ N, In N, — Ny In Ny — Ngln Ny — (N, — N) In (N, — N,)
— (Ny—Ng) In (N, — Ng) + Ny InJ, + NgInJp + Ny InJg
+Zy\NyInP, +Zy NgInP,]. (2.29)

For the incomplete exchange the standard states are the pure B-crystal (component 1) in
which N, = 4c = 0; and the pure component 2, i.e. the crystal maximally exchanged with
respect t0 A (de = Gax; Be = 1 — ay,y). Standard chemical potentials 4§ and 4§ of components
1 and 2 then follow.

On multiplying the equation of the exchange reaction (equation (2.26) by Z, Z; one obtains
for K, _

Ink = Zypy — (Zg AP + Zy BY™) pf + Zg AP U, — Z , A7 10§,
. RT
(a8 2a5™ () a2 2,0

(a3) 74" (1) %2

S
= anc +lnm, (2.30)

=1In

where y, and y, are equivalent fractions of components 1 and 2, respectively, and f; and f; are the
appropriate activity coefficients. One has the following relation for the composite material:

Ao = yp 43, }

2.31
Bc =1 _yzAénax‘ ( )

In order to obtain general expressions for the activity coefficients f; and f, one must know how
the individual partition functions J,, Jg, Jg, P,y and P, and the number of guest molecules, N,
vary with the cationic composition of the crystal. For the calculations all these quantities are
assumed independent of N, and Ny. Differentiating equation (2.29) partially with respect to the
numbers of moles of ¢, and ¢, and bearing in mind equations (2.27) and (2.28) one obtains for
the chemical potentials of components 1 and 2

#y==RT[ZynInZyn +ZynIn Zyn, —In Be — Zy 1y, In (Zy 9, — Ae)
— (ZB"IZ“—' 1) ln (ZBWZ_ Bc) +anB +ZB”G anG‘ +ZB InPLz],

RT
Hg = — Zp Amex {7~ pmin [ZaZgmInZ 9, +Zy ZyyyIn Zyyy, — Zp A2 In 4,

—Zy BY™In Be — Zp(Zy 0y — AP™) In (Zy 9y — Ao)
—Zy(Zpny— BP™) In (Zgny— Be) + Zp 49>~ InJy + Z BY™ InJy
+ZyZpngIndg+Zy Zg APXIn Py + Zy Zy BP In Py],

(2.32)

where ng = Ng/N, independently of the cationic composition.

Itisseen from equations (2.32) that for the exchange on two site groups of which one excludes A
and the other excludes B the ratio of activity coeflicients in the crystal phase is a function of
composition, even if the partition functions J,, Jg, Jg, By and Py, are taken as constant. The
exchange is thus always non-ideal, even when 4%%* = 1 and even if Z, = Zy = 1. However,
these simplifying assumptions allow one to express In ( f,/f;) in terms of the physical parameters
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ISOMORPHOUS REPLACEMENT IN ALUMINOSILICATES 665

Zn, Zy, My Nz and AP**. K, depends upon Z, Zg, 1y, N, Jas Jn; Jas Pras Pras 48, and 4§, (equation
(2.30)). Ion-exchange isotherms were then calculated as follows. For a given Z,, Z, %, and 7,
it is assumed that the maximum extent of exchange, A<, is that given by equations (2.25). It
is thus assumed that the extent of exchange is not limited by an unfavourable electrical charge
distribution or by the size of the A cations, but merely by the number of sites available for A. The
remaining variables were assumed to be such as to give QK, = 1, where @ has been defined in
equation (1.5). Thus in effect the equilibrium constant was assigned a priori. (Z,m# + Zym2) for
the aqueous solution, was taken to be 0.01 M, at which the ratio, I” of the aqueous activity coeffi-
cients is close to unity. Finally, the implicit equation (2.30) was solved for 4. for each value of 4
using a computer program. The results (figure 13) are very similar to the experimental results of
Barrer, Papadopoulos & Rees (1967) for the exchange of sodium by organic cations in
clinoptilolite.

(¢) Two site groups: one available for A and B and the other only for B

There are N, sites of type 1 available for A and B and N, sites of type 2 available only for B.
As before, pure B-crystal is the starting material. If the electrical charge associated with each site
group had to be neutralized by cations on this site group only, the sites available exclusively for B
would have to remain filled with a constant number of B cations at all times. This is the case of two
groups of sites, one exchangeable and the other completely unexchangeable and has been
adequately considered by Barrer, Klinowski & Sherry (1973). We therefore consider a more
general situation of two types of site intimately mixed with one another, on which the cations
neutralize a common anionic framework charge N,. Let Py, and Py, be the partition functions for
the amount of framework carrying one negative charge and associated with site groups 1 and 2
respectively. Jy, Jg; and Jg, are the appropriate partition functions for the cations. By reference
to equation (2.26), all realizable solid compositions can again be considered as solid solutions
of component 1 with component 2. If N, ions of A are present and the numbers of B ions on
each type of site are respectively Ng; and Ng, one has

Nor = Zy Ny + Zy N,
Noz = ZB NBZ: (2-33)
No = Noy + Noo-

The partition function for this amount of mixed crystal is

! Nl
M ? NN J¥m N PYu Ve (2.34)

P= s
Ny! Ny (Vg — Ny — Nigy) ! V! (N — Npo)! L

where, as before, the J and the P;, may be functions of composition. All quantities under the
factorial in equation (2.34) must be greater than or equal to zero. One must have therefore

(2.35)
Ny—Ngy > 0

Taking N,/N, = 91; N/ Ny = 5, one obtains as a condition for the existence of pure B-crystal:
My = 1/Zy and 9, > 1/Z;. The absolute limit to exchange with respect to the incoming ion A is
given by equations (2.25). It follows that for Z, > Zg complete exchange should always be
possible. The availability of sites for A is however not the only limitation. As before, there may be
steric reasons (if cations A are very large) and electrical reasons for AP#* to be lower than the
theoretical value.
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From equation (2.34) the free energy is given by
F=—FkT[N,In N, + NyIn N, — N, In N, — Ny, In Ny,
— (M= Ny — Ngy) In (N, — Ny — Ngy) — Ny In Ny,
— (Np— Ngg) In (Ny — Ngs) + Ny InJy + Ny In T, + N, In
+NgInJdg + Ny InPy; + Ny In P ,]. (2.36)

The standard states are the pure B-crystal (component 1) in which N, = 0; and the pure com-
ponent 2, i.e. the crystal maximally exchanged with respect to A. The appropriate expressions for
the standard chemical potentials # and x§ follow.

Letp, = Nyo/N, = Zg Ngo/Nyand p; = 1 —p, be the fractions of the negative framework charge,
N,, which are neutralized by cations on site groups 1 and 2, respectively. pf, p5, p4 and p5 are the
values of p, and p, at the standard states. The equilibrium constant for the exchange is given by
equation (2.30). However, this equation is insufficient for obtaining ion-exchange isotherms. To
calculate these one must know Jy, Jg;, Jpa, Jis Pris Pres Ng and py as functions of the cationic com-
position of the crystal. As a first approximation one may assume that all these except p, are inde-
pendent of N, and Mg, and that p, is alinear function of composition: p; = [(pf — p) Ac[AP¥X] + p3.
Differentiating equation (2.36) partially with respect to the number of moles of ¢, and ¢,, and
bearing in mind equations (2.27) and (2.28) one obtains for the chemical potentials of
components 1 and 2:

= —=RT[Zgn Inyg +Zgn,InZyyy+pfInZg — pp In (py — Ae)

4. — 4.
~ (Zam= ) In (1= ~B22) ~pp g, (Zyma ) In (Zy )

+p1 InJg; +p8 InJpy + Zygng InJg + Zppf In By + Zg p3 In ),

RT
Mo =— (Zy AMex + Z, Boin) [(ZaZpmInZy Zynyy +Zy Zyt)yIn Zy 7, (2.37)

~Zg AP InZydc— Zy (BY™ —p§) In Zy (Be —po) — (Zn Zp g — Zp AT
—~ZyBP+ ZypF) In(Zy Zyy — Zg Ao — Zy Be+Zy o) — Zy p5 Inp,
—Zy(Zpne—1p3) In (Zg 0y — po) + Zg AT InJj + Z, (BE™ — p5) In Ty
+ZypsIndgy+Zy ZgngIndg + Zy Zpp¥ In Py +Z, Zy pi In Py .

If site group 1 is completely exchangeable for cation A we have gf = AP3* and p§ = B™" and
the second of equations (2.37) simplifies. Ion-exchange isotherms were calculated using the pro-
cedure outlinedin § 2 (d). Equations (2.30) and (2.31) apply to the present model. Some isotherms
are shown in figure 14. They are in general similar in shape to the isotherms considered in § 2 (d)
(figure 13), but the curves with K, = 1 are closer to straight lines than the corresponding isotherms
in § 2 (d). This seems to result from the assumption that the p vary linearly with the cationic
content of the crystal. The isotherms 1, 2" in figure 14 for K, = 10 have contours similar to those
observed when transition metal ammine ions exchange with NH; in mordenite (Barrer &
Townsend 1976). Exchange at room temperature progressed only to about 50 %, and it was
considered that NHy sited in the wide channels was exchangeable by metal-ammine ions, but
NHj in the side pockets was not. This interpretation corresponds with the model considered
here, of two kinds of site, one kind accessible to both ions and the other accessible only to one of
the ions.
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Ficure 13. Ion-exchange isotherms for a crystal with two site groups. Sites of group 1 are available only for
cation A, and sites of group 2 are available only for cation B. K,Q = 1 and (Z, m%+ Zym®) = 0.01 m for all
isotherms. 9, = 1. For curves 1 9, = 0.1; for curves 2 9, = 0.2; for curves 3 9, = 0.5; for curves 4 9, = 0.8;
for curves 5 9, = 1; for curves 6 75, = 2;forcurves 79, = 5. (4) Z, = Zy = 1; (b) Z, = 2; Z; = 1. A=
was assumed to be that given by equations (2.28).

(a) LN/ f (b) ! b
. [
/2 3: 15 / ’,' Il
0.8\ 1 Y !
) [} ] “ 1 ] 1
[ i ! [} /
1 11 ! !
v /g ! 1
. | | [y - ] ]
T /
o 1/ 2 r/ 2'1
1
As 1:: 2/', 3/][ 4!////51 II II
L 1/ / /
0.4 I I, |/ / K
! ] 177 / /
) 17/ / /
] ,I //// // y
- / //’ - / //
/ ,/// Vaa
! v ,///
[75¢d Zr
g 23 2 e
pmmzpz== 0 1,20 ! —— === T | |
0 0.4 0.8 0 04 0.8
A

Ficure 14. Ion-exchange isotherms for a crystal with two site groups. Sites of group 1 are available for cations
A and B, and sites of group 2 are available only for cations B. The exchange is uni-univalent. Isotherms with
K, = 1 are drawn with solid lines, and isotherms with K, = 10 are drawn with dashed lines. pf = 0.5.
(@) 3, = 9, = 1. Forcurves 1 and 1’ p¥ = A™= = 0.6; for curves 2 and 2’ pf = 47** = 0.7; for curves 3 and
3’ p¥ = A™* = 0.8; for curves 4 and 4’ pf = 4> = 0.9; for curves 5 and 5’ pf = 42> = 1.0. (b)) For
curvesland 1’ 5, = 7, = 1,p¥ = 1.0 and A™* = 0.8; for curves 2and 2’ 7, = 2, 7, = 1, pf = 4™ = 1.0.
(m® +mB) is 0.01 m.

(f) Concluding remarks

The situations described in this section illustrate the effects of distinguishable configurations
of cations upon the exchange isotherms. The calculations give isotherm contours which simulate
well those of isotherms found in real s'tuations considered to correspond with the cation sitings
and restrictions assumed for the calculations. Because of the distributions of the cations between


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

668 R. M. BARRER AND J. KLINOWSKI

site groups, and because often, to neutralize the negative framework charge, only some of the
sites in each site group need be occupied, there are many opportunities for cationic disorder in
zeolites, even in the homoionic forms. One may consider further the positionsin a given site group,
for example those associated with the 6-ring windows between sodalite cages and 26-hedra in
faujasite (position II in figure 9). Here small cations such as Na* may be located in the 6-ring
whereas larger ions like Cst must for steric reasons be centred outside the plane of the 6-ring
(position II" in figure 9). In the mixed crystals this introduces an additional element of cationic
disorder, which however does not affect the counting of distinguishable configurations unless the
positioning is so different as to constitute a new kind of site. The criterion for a new kind of site
would be that when in the above illustration position II" is occupied, position II adjacent to it
can also be occupied. The counting of distinguishable configurations in the partition function
must then take this into consideration. If on the other hand occupation of position I1" auto-
matically requires that the position II be empty, then for the purpose of counting configurations
positions IT and II" can be regarded as a single site group.

3. REPLACEMENT OF SILICON BY ALUMINIUM
(a) Introduction

A veryimportant aspect of the chemistry of tectosilicates referred to in the general introduction
is the replacement of Si by Al in the anionic framework, accompanied by insertion of an electro-
chemical equivalent of cations, e.g.

Si*t = Al3+ Na™.

These replacements cannot be effected directly, but occur as a result of formation under different
conditions. Some aluminosilicates tend to have fixed compositions (e.g. nepheline, NaAlSiO,;
kalsilite, KAISiO,; kaliophilite, KAISiO,; albite, NaAlSi;Og; potash felspar, KAISizOg4; and
anorthite, CaAl,Si,Oq). Others have variable Si/Al ratios according to the conditions of synthesis
(e.g. chabazites with 1.08 < Si/Al < 3.9 (Barrer & Baynham 1956; Gude & Sheppard 1966);
faujasites with 1.0 < Si/Al < 3.0 (Breck 1974a); zeolite L with 1.04 < Si/Al < 3.5 (Barrer &
Mainwaring 19772; Breck & Flanigen 1968)). Both situations must be explained by an adequate
theoretical treatment of isomorphous replacement.

In the zeolites and in felspathoids of sodalite, cancrinite or scapolite families, water molecules
or salts act as framework fillers and stabilisers (Barrer 1960; Barrer & Cole 1970). In view of the
importance of tectosilicates such as those referred to above itis of much interest to consider various
situations which can arise in isomorphous replacement in statistical thermodynamic terms. Such
an attempt is presented in this section.

(b) The framework

Tectosilicate frameworks are composed of linked tetrahedra of SiO, or AlO,. Accordingly three

kinds of bond are possible:
(i) =Si—O—Si=

(i) =Si—O—Al=
(iii) =Al—O—Al=

We choose the =Si—O—Si= bond as the reference state. If Al replaces Si in a given tetrahedron
four such bonds are replaced by four =Si-——O—AIl= bonds (with an appropriate interstitial
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ISOMORPHOUS REPLACEMENT IN ALUMINOSILICATES 669

cation to maintain neutrality) and an energy change € is involved (excluding for the moment the
bonding energy of the cation). If both Si atoms are so replaced giving an =Al—O—AI= linkage
then over and above the energy e per Al thereis assumed to be an extra energy per =Al—O—Al=
bond of 2wf[v =3}w (v =4 = coordination number of a tetrahedral site). According to
Loewenstein’s rule (Loewenstein 1954) the upper limit to the ratio Al/Si is 1 implying that jw
must be large and endothermal so that =Al—O—Al= bonds are rare.

To estimate the contribution of =Al—O—AIl= bonds to the total free energy of the crystal
for any value of fw the treatment of adsorption with interaction given by Lacher (1937) and by
Fowler & Guggenheim (1939) may be applied to the above situation. The SiO, tetrahedra of the
framework correspond formally with bound unoccupied sites and the AlO, tetrahedra correspond
with occupied sites. The energy € corresponds formally with the energy of adsorption. If there are
Ng; unoccupied sites (unreplaced SiO, tetrahedra), N,, occupied sites (AlO, tetrahedra), the
framework partition function is

NAf\'TJ'\L JA; 8i JZ;JIV Alexp ( ]“]:\%_'1) Pmt

In this expression N, = N,; + Ng; = the total number of tetrahedra. P}’ allows for the contribu-
tion to the partition function arising from the extra energy 4w when a pair of AlO, tetrahedra
occupy adjacent sites in the lattice. Jg is the partition function of an SiO, tetrahedron for all
internal degrees of freedom and the internal and bonding energy of this group. In Fowler &
Guggenheim’s treatment of adsorption the partition function for a vacant site was taken as unity.
This would correspond with taking Jy; = 1. Jy, is the corresponding function for the AlO, group
excluding the extra terms due to ¢ and jw. We may incorporate the first of these, i.e.
exp (—eNy/kT), into J Y4 to give J)4#', and rewrite the partition function as

N |

JN JN ap int
Si YAl
Nl gt

If 1w is sufficiently endothermal the number of linked AlO, tetrahedra tends to zero; in this case
the limiting maximum ratio Al/Si—1 (Loewenstein 1954). The actual distribution in space of
the (Al, Si)O, tetrahedra can however reduce this limiting ratio. If the tectosilicate framework
is composed only of rings of even numbers of linked (Al, Si)O, tetrahedra (e.g. sodalite, zeolite A,
faujasite, chabazite) then for these compounds Al and Si can often alternate throughout the
frameworks and so Al/Si can approach 1. If however 5-rings are present (e.g. yugawaralite,
mordenite, stilbite) Al and Si cannot alternate everywhere throughout the framework and so the
limiting composition must give Al/Si < 1, because although =8i—O-—Si= bonds are allowed
=Al—O—AI= bonds are, as noted above, very improbable.

(¢) Cations and guest molecules

For simplicity a total of N identical crystallographic sites for cations is assumed. If cations
A, B, ... are present in these sites in numbers N, Ny ... then the partition function for the cations,

and also for the guest molecules, is
N!

Ny 7N, TN
O A A TH AT A A S St

Asbefore Jy, J; ... are the partition functions for individual ions A, B, ... and J§e for the Ny guest
molecules, as in §§ 1 and 2, includes a configurational term for these guest molecules. As before

47 Vol. 285 A
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670 R. M. BARRER AND J. KLINOWSKI

it is often the case that the number of cations needed to neutralise the framework charge is less
than the total number of crystallographic sites so that the term (N — N, — Ny —...)!is required.

(d) The complete partition function

The complete partition function is then

| | .
! ok TN TN e N Vs Piat. (3.1)

P T NG Nyl (N= N, —Ng—..) I NI N st

We may further include the situation in which an extra change in the energy of the crystal also
occurs whenever two cations A occupy adjacent crystal sites (see § 1 (¢)). Let this energy change
per pair be 2w, 5 [v where w, , is an energy and » is the coordination number of a cationic site
with respect to other nearest cation sites (not necessarily 4 as in the case of AlO, and SiO, tetra-
hedra). We assume further that there is no corresponding energy change whenever any other
ionic pair occurs. In this case the above partition function for the tectosilicate crystal should be
further multiplied by the term Pint (see §1 (¢)). A restriction of the extent of the replacement

reaction
Sitt > ABY, AZs+(Z,

arises, even in the absence of interaction, if the total number of crystallographic sites available
for the cations A is limited. The Al content cannot exceed the cation content. This limitation will
be considered later.

For a mixed cationic population ofions A, B, ... on cation sites, Pi*t follows from the Fowler &
Guggenheim treatment provided it is only the pairing AA which introduces any additional
energy (§1). This energy is as noted above 2w, ,/v. The properties of the partition function P
can now be examined assuming for simplicity that there is only one type of cation, A, present and
that Jy;, Ju1, Jo and J do not depend upon the extent of the replacement of Si by Al.

(€) Free energy of the system

The free energy, F, of the aluminosilicate with only one kind of exchange ion is

F = —kT{N,In N,— Ny, In N; — Ny, In Ny + Nln N— (N— N) In (N = N,) — N, In N,

+ Ngi InJg + Ny InJyy + Ny InJy + Ny InJg} + Figt + Fint) (3.2)
. 2X D-2X
int _ of T _2Xs D-2X,
where Fint = 2k [2MllnD—2XAI+MIn XD ],

.D = [1—4XA1XSIOL]%+1, <3.3)

o =1—exp(—w/2kT),
and where Fint has been defined in equation (1.16). We also use the following relations arising
in part from stoichiometry and the electrical neutrality condition:
Ny + Ny = N, Ng/N, = mg
NSi/Ny = XSi ZANA = NAI
NAI/Ny = X (N—NA)/Ny =rc—Xn1/Zy
NIN, = re NyIN, = Xp[Zy.

(3.4)
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On dividing equation (3.2) by kTN, and using the relations (1.16), (3.3) and (3.4), one obtains:

F Xa1 X1\, Xar, Xa
k—ﬁ—XAllnXAl+XSllnXsl—-—rcln7'c+(rc ZA)ln(rc—ZA) ZAI ZA
Jsi 2 X D-2X,,
+XAlln[J Jl/Z] —InJg — mGInJG+2[2XA11nD_2XAI+1 XD ]
Xy, 2(1=064) Dyp—20,
T ves et e | (3.8)

Since the J are assumed to be independent of X, so will be their combinations. It is convenient
to introduce the following constants

Je
Todi] = h (3.6)
anSi‘l"mG anG = tz.

We are dealing with a given total number, N,, of tetrahedra. The quantity F/N kT +t, = f(F)
will be plotted against the fraction, X,;, of AlO, tetrahedra. We have

F(F) = Xyln Xy + X In X —reln o 4 2 In 220
Z, Z,
X XAI 2XSi D—2‘XAI
Xa1y. 2(1-0,) Dys— 20A]
In 2= e ln m20—2 3.7
[Z Dja—20, Dya(1-0,) (3.7)

(f) Properties of the function f(F)

The equation for f(F) contains X,; as the independent variable and the constant quantities
Z,, ey by, WkT and wy o [kT. Z, is the valency of the cation; ¢ is the number of cationic sites in
the aluminosilicate per tetrahedron of SiO, or AlO, and will depend on the type of structure
considered. For f(F) to exist one must have (re —X,,/Z,) > 0, which isequivalent to restricting
isomorphous replacement of Si by Al to 0 < X, < Z, r¢, because once all the crystallographic
cation sites are filled, no further replacement of Si by Al is possible. f(F) contains the term X, ¢,
linearly dependent on ¢, and a strongly positive term in w/k7". In tectosilicates AlO, tetrahedra
avoid forming pairs and in the case of 4-coordination there would have to be such pairs for
X, > 0.5, It follows that f (F) will increase rapidly above this value of X ;. The term in wy [k T
may be either positive or negative. f (¥) has been calculated as a function of X, using a computer
program, and the results plotted. The influence of Z,, r¢, #;, w/k T and w, 5 [k T has been explored.
The following is a summary of the conclusions. Comments (i)—(vi) are for wy ,/kT = 0; the role
of this factor will be considered later, in comments (vii)-(ix).

(i) f(F) tendsto have aminimum, whose position and depth depend on therelative magnitudes
of t, and w/k T (figure 15 a). For sufficiently high values of w/k T  this minimum becomes V-shaped
(figure 15b). The minimum then lies very nearly at X, = 0.5 and the rate of increase of f(F)
beyond this value is very rapid. Despite the very sharp minimum the curve of f(F) against X},
is of course always continuous. Since chemical systems tend towards the state of the lowest free
energy, X4, = 0.5 will be the most probable composition of the tectosilicate. This situation
appears in minerals such as nepheline, kalsilite or kaliophilite.

47-2
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672 , R. M. BARRER AND J. KLINOWSKI

(ii) When ¢, is positive and increasing, the minimum in the curves of f (F') against X, becomes
shallower and moves towards lower values of X}, (figure 15¢). These values of X, for different ¢,

were as follows:
4 2 4 6 8 10

oin 0.18 0.10 0.043 0.017 0.0065

Thus if ¢, were sufficiently positive it should be possible to prepare nearly pure porous crystalline
silicas isostructural with and more stable than the aluminosilicate counterpart; while if ¢, is
negative the porous silicas will be less stable than their aluminosilicate isostructures.

| | i L l L Il 1 I 1 1 |

XAI

Ficure 15. Plots of f (F) against X}, for w,, /T = 0. For (a) Z, = 1,7, = 1, w[kT = 10; for curve 1 ¢; = —5;
for curve 2 t; = —10. (b) ¢, = —15; w/kT = 40; for curve 1 Z, = 1 and 7, = 1; for curve 2 Z, = 2 and
r,= 1;forcurve 3Z, = tandr, = 5. (¢c) Z, = 1;7, = 1; w/kT = 40; for curve 1 ¢, = 2; curve 2 ¢, = 6;
for curve 3 ¢, = 10.

The appendix shows how the sign of #; would be expected to depend on (e,/Z, +e¢,,), the
overall energy of isomorphous replacement. Whether (e,/Z, +¢,,) is endo- or exothermic is
expected to depend largely upon the fit of the cation AZs+ within a crystalline silica when the
replacement Si** — A3, AZa+[Z, occurs. If the crystalline silica is compact, e.g. quartz, only
the smallest cation Li* can be inserted. S-eucryptite (LiAlSiO,) has indeed the same framework
topology as p-quartz (Buerger 1948) so that for Si*"— AI¥*, Li" in the quartz framework
(€a/Z 4 +€4,) and £, are presumably negative. For larger interstitial ions (e.g. Na™, K*) significant
isomorphous substitution is not found in the quartz structure and so ¢, is presumably positive. As
the tectosilicate becomes more open these larger cations can be accommodated with negative
values of ¢;. Thus a-carnegeite, NaAlSiO,, has the framework topology of a-cristobalite (Buerger
1948), which is more open than quartz. As (e,/Z, +¢€,,) and therefore ¢, become more negative
the substituted aluminosilicate frameworks become progressively more stable than their pure
silica counterparts, so that, in accord with chemical experience, porous crystalline silicas having
the framework topologies of zeolites, for example, have not been synthesized directly. The one
very open crystalline silica, melanophlogite (Zak 1972) has not been synthesized in the laboratory
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ISOMORPHOUS REPLACEMENT IN ALUMINOSILICATES 673

and may exist because it is stabilized by included organic molecules, just as guest species such as
water help to stabilise zeolites (Barrer 1960).

(iii) Theshape of the plot of f(F) against X,; depends onlyslightly on the valencyof the cation,
Z, (curves 1 and 2 in figure 155).

(iv) If the entire range of X, is potentially realizable (that is if there are enough crystallo-
graphic sites to accommodate the cations needed to reach the theoretical purely aluminous
systemwith X, = 1) the value of 7. does not have much influence on the shape of the plot of f(F) or
on the position of the minimum. The actual value of the function does however depend on 7, due
mostly to the term 7¢In7. (compare curves 1 and 3 in figure 155).

-
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! i
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0 0.2 04 0 02 04 06
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Ficure 16. Plots of f (F) against X, drawn for Z, = 1, w/kT = 40 and w,,[kT = 0. (a) t, = —15. For curve 1
7, = %; for curve 2 r, = }; for curve 3 r, = 4. (b) For curve 1 4, = —0.2 and 7, = %; for curve 2 t;, = —1.1

and 7, = 1.

(v) As already mentioned, a limit to isomorphous substitution is Xj** = Z, ro or X3** = §,
whichever is the less. When Z, 7. < 1 only part of the curve of f (F) against X, is realizable. Two
examples will be considered.

In felspars there is one cation site per four tetrahedra. Accordingly 7. = 0.25, so that the
function f (F) terminates at the limiting compositions (K, Na)AlSi;Ogq (for which X, = 0.25) or
(Ca, Ba)AlLSi,04 (X, = 0.5) respectively for uni- or divalent cations. If ¢, is sufficiently negative,
asin figure 16 a, felspar compositions poorer in Al and so with some vacant cation sites would not
be expected. In this case homoionic Na-, K-, Ca- or Ba-felspars would, as found in nature, have
virtually fixed compositions. Thus the function f(F') is able to account for minerals of fixed Al/Si
ratios which are one or less than one.

In TMA-sodalite the unit cell composition is (Baerlocher & Meier 1969) (TMA),[Al,Si;,0,,],
where TMA denotes tetramethylammonium ion. Here, because of the size of the TMA ion there
is room for only one cationic site per 14-hedral sodalite cage. This corresponds with rTM4 = 1 so
that X, = % is the maximum value possible in TMA-sodalite. X}}** = } corresponds also with
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674 R. M. BARRER AND J. KLINOWSKI

the lowest value of f(F') in the allowed range (curve 1 in figure 164) and will thus be the most
probable composition. On the other hand, in Na-sodalite hydrate there are four times as many
cation sites as in TMA-sodalite, so that 7, = £. This means that X{** is governed in this case not
by the value of 7 but by the magnitude of $w giving X§** ~ 0.5 for large endothermal 1w in
accord with Loewenstein’s rule. This is the composition found in naturally occurring sodalites.
In solid solutions of Na- with TMA-sodalites where both cations are present and the equivalent
fraction of the sodium sodalite is Na$°® we expect

X, = 3(1+2Naied).,

(vi) Ifthe minimum of the free energy curve is not very pronounced, it is expected that a con-
siderable range of X}, contents would be realizable by varying the conditions of synthesis. Thus
curve 1 of figure 16 b represents the most favoured aluminium content as onein which X, ~ 0.25,
although other compositions in the range 0 < X}, < 0.5 might, from the shape of the curve, be
achieved in synthesis under suitably varied conditions. Curve 2 of figure 165 shows another
possibility of a variable Al/Si ratio, with a shallow minimum at Al/(Al +8i) = 0.33. This mini-
mum corresponds with normal analcime compositions, but as curve 2 suggests other compositions
have indeed been observed in syntheses of this zeolite (see, for example, Saha 1959).

J(F)

X

Ficure 17. Plots of /(F) against X}, drawn for Z, = 1, ¢, =—15,r, = 1, w/kT = 40 and v = 4. For curve 1
wyafkT = —10; for curve 2 wy,[kT = 0; for curve 3 w,,[kT = 10,
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(vii) One may consider the case for which wy, /AT # 0. When w, , /T is large and negative
there is a tendency for the cations A to cluster together and FInt has appreciable values. The last
term in the expression for f (F) (equation (3.7)) is negative and, as figure 17 shows, moves the curve
of f(F') against X, down, but without greatly changing its shape. For positive values of wy , [k T
cations A avoid each other and Fint in the region 0 < X,; < 0.5 is small. Neither the shape nor
the numerical values for the plot of f(F) against X,, is significantly affected by the term in
wa kT in this case (figure 17). :

(viii) Two parameters, ¢, and w/kT, have the dominant influence on the shape and the
position of the minimum in the curve of f(F') against X,,. In addition, a low value of 7. restricts
the allowed extent of Si— Al replacement.

(ix) The plots in figures 15-17 were drawn for the situation when there is only one kind of
entering cation. If there are z kinds of cation, the fuller expression for the partition function must
be used, and the plot will require z+ 1 dimensions. However, if there are two entering cations,
A and B, the situation can be considered in terms of two sections of the 3-dimensional surface with
planes Be = 0 and variable X, (this part); or X,, = constant and B variable. This second
cross section represents an A = B cation exchange and is considered in §1. Bc denotes the
equivalent cation fraction of cation B.

Two further comments may be made. Firstly, although the foregoing considerations provide
an evaluation of the conditions necessary for the validity of Loewenstein’s rule, they do not
preclude the possibility of a tectoaluminate structure. In this context it is of interest that tetra-
calcium trialuminate is reported to be the aluminate analogue of sodalite (Ponomarev, Kheiker
& Belov 1971). Secondly, the above considerations treat all positions in the tectosilicate frame-
works as equivalent. From the structures of zeolites (e.g. Meier & Olson 1971), for instance, one
can see that there may be several geometrically distinguishable positions in which AlO, and
Si0, tetrahedra can be found. However, this does not mean that, for example, the J,, for the
AlQj, tetrahedra in this distinguishable positions are significantly different from each other.

The treatment given in § 3 can be extended in a straightforward manner to include replace-
ments of the kinds Si = Ge, Ga = Al. Replacements such as Na, Ga = Si or Na, Ga = Ge are
already included in the analogous formulations for Al and Si.

APPENDIX

In order to obtain an estimate of ¢, one makes the following assumptions:
(1) JsilJar = exp (—en[kT);
(ii) cations A behave as isotropic three dimensional oscillators;
(iii) Jgisindependent of composition of the crystal or thereis no guest molecule in the structure.
With the above assumptions we obtain

=Ly, —Ca
L = ZAanA T
where (Rushbrooke 1949)
Jy = [ 2sinh (Z2) | exp (£2
A= | #SgT) | *PA\RT)
_3 . ho €x a1
Thus tl = ZA In [2 sinh (W)]—m k—j-_,,

where ¢, is the bonding energy of the cation in the lattice.
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For w = 101351 and 7" = 300K we have

1.7265 €
4= —0.401(—é+e )
1 ZA ZA ‘Al

where e, and €4, areink] mol—1. Tohave #; > Oitisnecessary that (e, +Z, €,;) < 4.306 k] mol-1.
To have ¢, < 0 the sign of the above inequality is reversed.
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